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PREFACE

The work presented in this technical report was a joint effort
between researchers at the Air Force Research Laboratory (AFRL)
and the University of Florida. The Computational Mechanics
Branch (AFRL/MNAC) was the primary developer of the high order
ENO solution algorithm for the governing equations of uniaxial
strain (1D) and plane strain (2D). The University of Florida
developed and implemented the interface resolution and tracking
algorithms.



1. Introduction

The dynamics of high-speed impact between materials is characterized by large
deformation and short time scales. Wave propagation in the impacting media is
highly nonlinear, and involves localized phenomena such as shear bands, crack
propagation, and wave refraction (Meyers,1994). These problems are typically
challenging to solve because, in contrast to conventional structural dynamics
problems, the deviatoric and pressure terms in the stress tensors are both important
and need to be modeled separately. In contrast to conventional fluid dynamics
problems, the stress and strain fields are related through nonlinear elasto-plastic yield
surfaces, the models for which must be included in the governing equations.
Furthermore, the interface between materials experiences not only fast motion, but
also large variations in shape. Such problems have been routinely handled by the so-
called hydrocodes. Benson (1992) provides a very detailed review of the formulation,
modeling and computational techniques employed by these large-scale computer
codes.

In the past several years, progress has been made toward developing predictive
techniques based on the application of modern computational solid and fluid
dynamics. For example, Camacho and Ortiz (1996, 1997) have developed a
Lagrangian finite element impact dynamics model involving brittle materials
(Camacho and Ortiz 1996), and ductile penetration (Camacho and Ortiz 1997). Their
approach is based on adaptive meshing, explicit contact/friction algorithm, and rate
dependent plasticity. Trangenstein (1990, 1994, 1995) , and Trangenstein and Pember
(1991) have adopted Godunov’s method and ideas developed in modern
computational fluid dynamics to handle the problem in the context of a Riemann type
problem with second-order accuracy. In addition, there have also been finite volume
methods based on general discretization treatments (Bailey and Cross 1995, Dormy
and Tarantola 1995) with first-order accuracy.

Overall, it seems clear that while progress has been made, impact dynamics has been
rigorously investigated only recently. Much remains to be done before we can treat it
satisfactorily in terms of geometric representation, interface movement, temporal and
spatial resolution, accuracy of numerical schemes and incorporation of realistic
materials behavior models.

In this report we describe the development of a numerical solution technique for the
simulation of high-speed multimaterial impact. Of particular interest is the interaction
of solid impactors with targets. This problem is important in applications such as
munition-target interactions, geological impact dynamics, shock processing, and
formation of shaped charges upon detonation and their subsequent interaction with
targets (Meyers, 1994). Such interactions present the following challenges to
numerical simulation techniques:




1. High velocities of impact leading to large deformations of the impactor as well as
targets.

2. Nonlinear wave-propagation and the development of shocks in the systems.

3. Modeling of the constitutive properties of materials under intense impact
conditions and accurate numerical calculation of the elastic-plastic behavior
described by the models.

4. Phenomena at multiple interfaces (such as impactor-target, target-ambient and
impactor-ambient), i.e. both free surface and surface-surface dynamics.

This report describes a numerical approach that seeks to tackle all of the above
aspects. In the following description we elaborate on the numerical framework for
solution of high-velocity impact problems and present a rationale for choice of the
numerical methodology. We also address issues of accuracy in the treatment of the
wave propagation in the bulk media and interactions at the interfaces, and present
results showing the capability of the method.

2. Governing Equations for 1D case: Uniaxial strain

The system being simulated in the 1D case is as shown in Figure 1. We consider two
slender rods impacting on the x-axis. The rods can be of finite or infinite extent. The
system of governing equations for the elastic-plastic flow under uniaxial strain
conditions is of the form:
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Figure 1. Impact of two bars along the x-axis. Setup for 1D uniaxial strain case.

where p is the density, u is the velocity, E is energy, £ is the equivalent plastic strain,
s, is the deviatoric stress.

The flux vector is of the form ) i
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pu’+p
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where p is the pressure. The source vector is
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are the source terms arising in the equations for deviatoric stress and equivalent
plastic strain. G is the shear modulus of the material and ¢, = H(€) is the equivalent

stress-strain curve as determined by uniaxial strain experiments. The pressure is
determined by an equation of state (eos) of the form:

p=eos(p,pu’,E) (7)

The specific eos in use here is the Mie-Gruneisen eos (Meyers 1994):
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where py is the density of the unstressed material, ¢y and s are coefficients that relate
the shock speed U and the particle velocity:

U, =cy+su (12)

The conditions that apply at the ends of the rods depend on the extent of the rods and
are addressed later in this report.

3. Governing equations for the 2D case: Plane strain

In 2D the impact of arbitrary shapes can be considered in the plane as illustrated in
Figure 2. The equations in 2D correspond to the plane-strain situation and are as
follows:

The transport equation in vector form is:
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Figure 2. Impact of two objects in the 2D case. A plane strain problem is solved.

The vector of independent variables, and the x- and y-direction convective flux
vectors are given by:
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where the source term in the equation for equivalent plastic strain is:
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In this and other expressions where the tensor index notation is mixed with Cartesian
component notation, subscripts 1,2 or 3 correspond to X,y or z respectively. The
source term in the equation for deviatoric stress component is:

’ 3 SiiSmn D,,n,, au aV
S,, =2G D"f'"z—_—;?z —1+£_, —Q,kSkj+Sikaj+S55;+Sij$ (16b)
3G

In the above the rate of deformation tensor components Dj; are used and these are
defined as
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where §;; is the Kronecker delta. The terms in Equation (16b) that involve € are
needed to maintain material frame indifference.

In the equation set above the three components of deviatoric stress are chosen as the
dependent variables. The total stress components are related to the deviatoric stresses
as:

c; =Ss;— po, (18)

where by definition p = —%O'kk .

In addition, one again requires the eos for the pressure which is given by the Mie-
Gruneisen equation of state, Eq. (8). The above set of equations is solved in the
presence of moving boundaries, namely the impactor and target. The numerical
approach adopted for solving the governing equations needs to incorporate the
presence of these moving boundaries where various types of boundary conditions
may apply. Therefore the critical issue of the manner in which interfacial dynamics is
approached numerically is addressed next.

4. Numerical Approaches for Moving Boundary Problems in Fluid Mechanics

A large variety of physical phenomena involve the coupling of evolution of flowfields
or material deformation fields with boundaries that move, deform or evolve in time.
Examples include the deformation of drops, bubbles, liquid free surfaces etc., the
evolution of phase boundaries in solidification and vaporization, fluid-structure
interaction problems at the large scale such as in aeroelasticity, and in the small scale
such as in biomechanics and a whole host of other interesting phenomena. These
problems are challenging to CFD practitioners due to the complexity associated with
the often severely deformed boundaries in (or enclosing) the flow, and the
nonlinearity resulting from the coupling of the interface dynamics with the dynamics
of the flowfield. Ideally one would like to track the moving boundary as a sharp front
(assuming discontinuities in some flow quantity such as stress, energy etc. are present
across the interface) without smearing information at the front. Also, one would like
to solve the flowfield within the regions separated by the interfaces with desired
accuracy. If the interfaces become multiply connected one would wish to follow the




evolution of the interfaces through such topological changes. Of course, it would also
be desirable to correctly model the physics so that all the ingredients of the dynamics
can be included in the model. Algorithms for computational solution of moving
boundary problems operate under these demands.

In the computational fluid dynamics literature numerous methods have been
developed for the purpose of handling moving boundary interaction with flows. These
can be classed broadly under the categories of Eulerian, Lagrangian and mixed
(Eulerian-Lagranian) methods. We will briefly summarize the salient features of each
method in the following:

1.

Lagrangian methods: Ideally one would want to simulate the effect of the
boundary by treating it explicitly, without smearing the information at the
interface, i.e. with minimum numerical diffusion. There are several ways of doing
this. For a fixed boundary, when the shape is truly complex, one can resort to
block-structured domain decomposition (Shyy, 1994), overset meshes (Steger,
1999, Johnson and Belk, 1995), or unstructured boundary-conforming curvilinear
grids (Venkatakrishnan, 1996) to discretize the domain. The last method has been
developed very strongly by the finite-element community (Camacho and Ortiz,
1996, 1997) and has been used also by the fluid dynamics community (Fritz and
Boris, 1979, Glimm et al., 1988, Rausch et al., 1993) for moving boundary
problems. There has also been an emergence of meshless methods for the solution
of finite deformation problems (Liszka et al., 1996, Duarte et al., 1996, Randles et
al., 1996). These have been successful in solving an impressive array of problems.
For moving boundaries which may undergo large deformations, or are subject to
topology changes in the course of their evolution, generating body-fitted grids to
conform to complex boundaries may become taxing. Furthermore, as will be
elaborated below there are certain advantages to solving large distortion problems
on fixed structured meshes in terms of straightforward extensions of well-
developed numerical schemes, application of fast solvers, absence of grid
distortion, entanglement and massive re-gridding effects, and the ability to follow
the evolution of interfaces through changes in topology without affecting the
computational grid. There are of course some significant issues involved in making
fixed grid methods work and these are also mentioned below.

2. Eulerian methods: In this class of methods, particularly for surfaces undergoing

large deformations such as in free-surface flows or shattering of droplets, it is
advantageous to dispense with tracking the interface as a curve or surface.
Instead, in this class of methods the boundary is deduced from values on the mesh
of a field variable which could be a volume-of-fluid (Hirt and Nichols, 1981,
Brackbill et al., 1992, Kothe and Mjolsness, 1992, Scardovelli and Zaleski, 1999),
a level-set (Osher and Sethian, 1988), or phase-field (Kobayashi, 1993, Wheeler
et al., 1992), or the enthalpy in solidification problems (Voller and Prakash,
1987). The interface is then an isocontour of the appropriate field variable.
Usually calculations are performed over a fixed Cartesian mesh. However,
recently some Eulerian methods have been extended to curvilinear (Zhang et al.,




1998), adaptive (Sussman, 1997) and unstructured meshes (Barth and Sethian,
1998). Eulerian methods perform very well for a variety of moving boundary
problems and are perhaps ideally suited to free-surface problems. However, in
these problems, particularly when surface forces are to be included in the flow
calculations, the interface essentially is diffuse and occupies a few grid cells in
practical calculations. This may be undesirable in many problems both from an
accuracy as well as physical reality/modeling standpoint. The problem treated in
the current report is one example.

3. Mixed (Eulerian-Lagrangian) methods: This class of methods combines some
advantages of the two approaches above. The interface is tracked explicitly as
curves (or surfaces in 3D). The computations are performed on fixed meshes
whose topology is independent of that of the interface. One example of this type
of method is the immersed boundary technique used for a range of multifluid
problems (Unverdi and Tryggvason, 1992, Juric and Tryggvason, 1996,
Udaykumar et al., 1997) and for fluid-structure interaction problems in biofluids
(Peskin, 1977, Fauci and Peskin, 1988). While explicitly tracking the interface,
this method transmits the information regarding the discontinuity across the
interface to the grid in much the same way as purely Eulerian methods, i.e. by
casting the surface forces into a body force term in the governing equations.
Therefore the solution reverts to a one-domain approach, i.e. the solver does not
see a discontinuity at the location of the interface, but experiences distributed
forces and material properties in the vicinity of the interface. As demonstrated by
Beyer and Leveque (1992) this results in a method that is globally O(#) accurate,
where 4 is the grid spacing. On the other hand, the cut-cell treatment (Udaykumar
and Shyy, 1995b, Udaykumar et al., 1996, Udaykumar et al., 1999, Ye et al,,
1999) proceeds to reconstruct the domain on either side of the interface with
attention to the immersed boundary and its geometry overlying the grid. Phases
are treated separately and no smearing of the interface takes place at the
formulation level. A conservative control volume treatment demanding care in
assembly of fluxes is performed for cells on both sides of the interface. This
method has been applied in recent work to problems involving immersed
stationary and moving solid boundaries in incompressible flows where global
second-order accuracy has been demonstrated.

The choice of moving boundary method from the general categories above depends to
a large extent on its appropriateness for the physical problem chosen. In this report
we demonstrate a fixed grid approach for high-speed impact that can be a powerful
tool for numerical computation. The method presented in this report falls under the
class of mixed methods. It operates on a fixed Cartesian mesh (the Eulerian part)
while the interfaces move through the mesh (the Lagrangian part). The method treats
the interfaces as discontinuities without smearing on the mesh, therefore it is a sharp
interface method. The advantage of the fixed grid approach is obviously that grid
topology remains simple while large distortions of the interface take place. The issues
involved in explicit interface tracking are discussed below.




When interfaces are tracked explicitly, periodic reorganization of the interface
information becomes necessary. This can result from dilation or compression of
segments of the interface or due to topology changes of the interface. In 2D, mergers
and breakups can be handled quite effectively (Udaykumar and Shyy 1995a, Juric and
Tryggvason 1996). In 3D the operations can become more complicated (Snyder and
Woodbury, 1993). Therefore, in 3D situations, explicit tracking of interfaces will be
work-intensive in the context of mergers and breakups in comparison to purely
Eulerian methods. However, there are physical problems for which explicit interface
information becomes desirable; then interface tracking becomes the natural choice for
immersed boundary treatment. One instance is when a solid-liquid boundary is being
tracked and where the no-slip boundary condition is to be applied. This can be done
for boundary-fitted grid computations quite naturally. For fixed grid computations
also this can be done if the exact location of the interface, as provided by explicit
tracking, is known (Udaykumar and Shyy 1997, Udaykumar et al. 1999, Ye et al.
1999). In fluid-structure interaction problems, such as in the dynamics of membranes
(Dong et al., 1988, Kan et al., 1998), adhesion of cells to substrates in biofluids
(Jones et al., 1995) or the dynamics of pliable aerodynamic surfaces (Shyy et al.
1996; Smith and Shyy, 1996; Fauci and Peskin, 1988), the forces generated within the
membranes depend on the stretching and bending of the membranes. This requires
information on the dilatation of the interface. Furthermore, for the case where the
membrane is anchored to a surface as in the adhesion of a cell membrane to a
substrate, the forces transmitted to the membrane need to be calculated (Dembo et al.,
1988). Explicit tracking is ideally suited to these types of situations. The ability of
mixed Eulerian-Lagrangian methods to incorporate both solid-liquid no-slip
boundaries as well as fluid-fluid interfaces has been demonstrated in previous work
by the authors (Udaykumar et al., 1997).

In the problem tackled in this report, an Eulerian-Lagrangian method can be used to
good effect. Here we wish to simulate the interaction of a solid impactor with targets
and to track the interface separating the two materials in time to determine the
deformation of the two interacting bodies. When the materials are in contact
following impact the material discontinuities at the interface need to be tracked
without numerical diffusion. Explicit interface tracking is ideally suited to this task.
Having chosen to explicitly track the boundaries, a fixed grid is used to compute the
flow solutions in the presence of the moving boundaries. This allows an extension of
highly accurate shock-capturing methods such as Essentially Non-Oscillatory or ENO
(Harten et al., 1997, 1987, Shu and Osher, 1988, 1989) in the present case. These
methods have been developed for scalar conservation laws in fixed grid settings to
solve moving boundary problems with arbitrarily distorted interfaces. A Cartesian
grid ENO formulation suffers little change when applied to the present problem. We
now proceed to describe the method in detail.
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Fit piecewise quadratic arcs X(s),y(s)
Markers (x,y);

Figure 3. Illustration of interface properties. The normal to the interface and
arclength coordinate are shown.

5. Interface tracking algorithm

The interface is described by interfacial markers defined by the coordinates X(s).The
spacing between the markers is maintained at some fraction of the grid spacing,
0.5h<ds<1.5h. The convention adopted is that as one traverses the interface along the
arclength, the material enclosed by the interface lies to the right. This is illustrated in

Figure 3. The functions x(s) =ay 52 + by s + ¢y and y(s) =ay 52 + by s + ¢y are
generated. The coefficients ayy,, by/y and ¢y, at any interfacial point i are obtained
by fitting polynomials through the coordinates (x;_7,y;_1), (x;y;) and (xj 4 1,Yi+ 1)-

The coefficients ayy,, by/y and cxyy, are stored for each marker point. The normal to

the interface then points from the interior to the exterior of the object and is given by
the equation:

(e N (19)

The derivatives xg, yg are evaluated using central-differencing along the arclength

coordinate s. Cubic splines were also tried without observable differences in the
results for previous test problems. Therefore, central differencing was adopted since it
is easily applicable to different end conditions for the boundaries.
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Figure 4. Interfacial cell and bulk cell classification on a grid with an interface
passing through it. Also shown are interfacial cell properties.

6. Relationship between interface and grid

Once the interface has been defined, the information on its relationship with the grid
has to be established. There may be several interfaces (henceforth called objects)
immersed in the domain. Each of the objects may enclose material with different
transport properties. Therefore it is necessary to identify which phase each
computational point (i.e. cell center point) lies in. The procedure for obtaining this
and related information has been discussed in detail in Udaykumar et al.(1999). The
end result of the procedures are the following pieces of information which are
required to set up the discretization scheme for the present method :

The interfacial cell in which each interface marker lies.

The interfacial marker which is closest in distance to a computational point.
The material in which each computational point in the mesh lies.

Several geometric details such as the shape of the resulting cut-cell, the
locations where the interface cuts the cell faces and where it intersects the cell
center lines (the dotted lines shown in Figure 4). These details of a cell are
used in constructing the stencil for each interfacial cell.

5. Alist of all interfacial cells.

Fal el S R

These pieces of information regarding the interface and its relationship to the
underlying grid are computed only in a lower-dimensional set of interface cells.
Therefore using local searches and operations and data storage limited to this set of
cells renders dealing with the interface and mesh relationship economical. In practical

12




runs the operations associated with obtaining the interface and mesh information is a
small fraction of the computing time associated with field equation solver.

7. Numerical method for solving the field equations

Our interest in this work was to simulate the nonlinear wave propagation phenomena
which occur in the high-speed impact of munitions on targets. Such problems involve
highly dynamic, even discontinuous loading of the system. The waves generated upon
the impact loading become propagating shock waves. Physically realistic weak
solutions of the governing equations are therefore sought. There are a host of
methods designed for the solution of hyperbolic conservation laws in the presence of
shocks developed for high-speed aerodynamics applications (Leveque, 1990). The
challenge in this report is to adapt these methods to compute wave propagation
phenomena in solids where the constitutive relationship plays a role in the
propagation of waves, and hence deformation of the media. We now present the local
Lax-Friedrichs Essentially Non-Oscillatory (LLF-ENO) scheme used for solving the
conservation laws. In order to apply this method for integration of the equations, it
has to be established first that the system of equations under consideration is indeed
hyperbolic, i.e. that the eigenvalues of the Jacobian matrix for the system are all real.
This was verified to be the case for the range of physical parameters of interest
(material properties, velocities etc.) in this work by Vanden (1998).  For the
homogeneous form of the 1D system written in conservative form, the eigenvalues
are found to be:

A=u
A =u
h=u
p
\/a—"p2+ropo<p—pu2+E>
A =u—tP (20)
p
op
\/a—pp“+Fopo(p—pu2+E)
As=u+ p
p

These eigenvalues were found to be real for the range of parameters of interest
in this werk.

LLF-ENO discretization of the governing equations:

Consider the governing equation for one-dimensional transport:

90 , 9F(Q)

() 21)
Let
%—Q— = L(Q) (22)
t
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Figure 5. Hlustration of grid point and grid face definitions for discretization of
governing equations. H* and H” are derivatives of the interpolating function evaluated
from the left and right stencils respectively.

where
L) = -4 D) 23)
xL’ - xW

F. and F,, are the fluxes at the east and west faces shown, and x. and x,, are the
locations of the east and west faces respectively, as shown in Figure 5. D is an
appropriate discrete operator for the source terms. In the current work, the source
terms are discretized using a 2"%-order central difference scheme. This was found to
be robust for the calculations performed. However, it may be necessary in future
work to develop a more sophisticated differencing procedure for the source terms as
well.

The three-step third-order in time Runge-Kutta scheme is used in this work and takes
the form:

Q(l) — Q(n) +AIL(Q("))
Q(Z) =%(Q(l) +3Q(n))+iAtL(Q(l)) (24)

0" =120 +0")+ S MLG®)

The spatial order of accuracy of the ENO formulation used to solve Eq. (1) is
determined by the interpolation practices used to evaluate the fluxes at the faces e and
w, i.e. in obtaining F, and F,. A non-uniform mesh implementation of the fluxes in
the ENO formulation is used here due to the presence of immersed boundaries, as
illustrated in Figure 6. With particular reference to cell j , in the 1D case the interface
can lie anywhere between x; and x;,;. The two materials are treated separately in the

sharp interface formulation and the flux F. is evaluated at a location (x; +x,)/2.

Thus, the spacing for cell j is different for the e and w faces. The flux evaluations for
the ENO formulation comes from derivatives of an interpolating function H(x) as
follows:
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Figure 6. Grid point and grid face definitions for evaluation of fluxes in the
presence of an immersed boundary.
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The derivatives are evaluated from divided differences and the flux evaluation is
performed as follows:

Fe=Fe++Fe—=H’+(‘xe)+H,_(‘xw) (26)

The superscripts (+) and (-) indicate the positive and negative direction fluxes at the
face e under consideration as illustrated in Figure 5. The derivatives H’ are obtained
as explained below. Consider the interpolating function H(x). In terms of the divided
differences this function can be written as:

H(x)=H[x, 1+ H[x,,x)(x—x,)+ H[x,,x,x]1(x-x,)(x—x)+O(h’) 27

his interpolating polynomial can be carried to higher orders. We will restrict attention
here to developing an O(h?%) flux approximation. In the above H[.,.] symbolizes the
first divided difference and the higher-order divided differences are obtained
successively. The Essentially Non Oscillatory (ENO) schemes (Shu and Osher,
1988,1989), are derived from a suitable choice of the stencil locations (Xo,X{,X2,....)
from which the interpolating function is constructed.
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Figure 7. Illustration of stencils used for obtaining the derivative H’™ at
face xj;1/2- (a) First-order stencil. (b) Second-order stencil for H**¥*,
(c) Second-order stencil for H’®*,

For example, looking at Figure 7(a) it is clear that there is only one stencil possible
for the first divided difference for control point location j, while there are two
candidate stencils (shown in Figures 7(b) and (c)) for the second divided difference,
as represented by the forward and backward differences in the divided difference
table. The ENO scheme and its variants derive their essentially non-oscillatory
property from the choice of stencils adopted. The original ENO scheme (Harten et al.,
1987, Shu and Osher, 1988,1989) chooses the “smoothest” stencil, i.e. the lesser of
the two values for the divided differences obtained from the stencils in Figure 7(b)
and (c). Weighted ENO schemes (Jiang and Shu, 1996) devise appropriate weights
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for each candidate divided difference and then evaluate the weighted divided
difference. The present formulation is based on the Convex ENO scheme proposed by
Liu and Osher(1998) and chooses the divided difference value ‘“closest” to the
previous (here the first-) order flux chosen. It is this adaptive stencil choice procedure
that enables the Lax-Friedrichs based ENO scheme to avoid smearing of solutions
away from shocks while maintaining non-oscillatory character. Now the first divided
difference is obtained as follows:

H*()=H'|x ,.x, =%(f(q[xj])+(xj+lq[xj]) (282)
2

and

- - 1
H™G)=H|x.x 5 |==(falx.D-a ial.)  @sb)
2

Note that in general:

H' x5, =5 (@) +x)g(D) (292)
H T3] oy =5 (F @) -39 () (29b)
where
- (x+x)
xX= —-2 30)

These of course apply to cells away from the immersed boundary such as cell j+/ in
Figure 6. For cells that are adjacent to the immersed interface such as cell j in Figure
6, the flux evaluations need to be modified. Here, the east face is not the grid cell face

but is located at %(x ; +x,,) where Xin is the location of the interface. Therefore, for
cellj:
’+ 1
H™(x)=Hlx %, )=_(f(alx;D +aj+1q[x,-]> (31a)
2

2

H,_(xe) = H[xe’xint ] =%(f(qim )—aj+lqint) (31b)
2

where g;,, is the interfacial value of the convected scalar variable g. This value needs
to be obtained from appropriate boundary conditions applied at the interface.

The first-order flux at the interface is then obtained using Eqs (26) and (28), or
Equations (26) and (31) if cell j adjoins the interface. In order to determine the 2nd
order divided difference, the following steps are taken:




As a matter of notation we denote the first-order flux at cell face located at x , as:
i+
2

~ 1
fU. 3D =H"lx |,x ,]=5(f(q(x,»))+064 1qlx; D) (32)
= j+§ ]+E

2

where the notation for the flux at the face in terms of f( J1, j2,x1) indicates that the
flux is computed for the face of cell j2 using values at control point j1. The +1
indicates the direction of flux computed. Therefore, following this notation, the ﬂux
in the negative direction at cell face located at x 1 is given by:

2

fU+Lj~D=HTx ,,x 31=5<f<q<x,+l»—a_ glx,) - (33)
1+5 J+5 J+5

The candidate second-order derivatives of the interpolating function H(x) at cell face
x , are:

i
J >

(x stx | —2x 1)

J— j—= J+
,(2“)+(x. 1) H” [x 37X 1+ 2 : 2 H+[x_ X 4]
2 3 (x =X 3) 25
2 I
2x | -x , x )
ity s
+ H'[x X ] (34)
(x 1=x 3) ETRA
T

which can be written based on the notation in Egs. (32) and (33) as :

’(2a)+

(x. 1) fi- LA+ A% F (- Lj+D+B* (i j+D)  (35)

where A and B are grid dependent factors determined by the locations of the stencil
points chosen. Similarly, the other candidate second-order fluxes can be written as:

i(2b)+

(x 1) FUs i)+ AP F(j, jAD+ B F(j+1, J+1) (36)
H™®(x 1)= FULi=D+ A" F(j, jD)+ B F(j+1, J=1D (37
I+5

H (e )= F(j+Lj=D+A™" F(+1, j=)+ B F(j+2, j~1) (38)
2



Similar expressions for the 3" and higher-order derivatives can be obtained.
Therefore, for the second-order fluxes at the face j+1/2 there are two candidates each
for the (+) and (-) direction contributions.

In the presence of immersed boundaries the discretization in the cells adjoining the
interface only will need to be modified in two ways:

1. The interface boundary conditions will appear in the flux contributions
from the interface side as in Eq. (31).

2. The stencil choices possible at such cells will be limited in the direction in
which the interface lies. For example, with reference to Figure 6, for cell j
there will be one first-order stencil in each direction as for the interior
cells. However, for interfacial cell j+1, there can be only one choice of

second order flux for the estimation of H'".

These considerations are no different in fact from that at the cell immediately in the
interior of the domain boundary. Therefore the immersed boundary treatment for
evaluating fluxes is no different from that for domain boundary cells. Apart from
these considerations the fluxes for the cell j adjoining the immersed boundary are
constructed using Eq (31) except that the values of g, , i.e. boundary conditions on
the immersed interface need to be used instead of the grid point g; values in the Eq.
(28). It is not readily apparent how to compute the boundary values for all the
dependent variables in the particular physical problem being computed. Some
physically based boundary conditions can be imposed based on the physics of the
impact phenomena. However, some of the physical quantities will require numerical
boundary conditions as in other systems of PDEs. The boundary conditions chosen
and the rationale for the choice are explained in the following sections.

8. Boundary and interface conditions in the 1D case

If the rods are semi-infinite the boundary conditions at x=0 and x=L (L being the
extent of the domain along the x-axis) correspond to open boundary conditions (i.e.
zero-gradient conditions). However, for finite size rods lying within the domain as
shown in Figure 1, two types of boundary conditions need to be considered.

Type 1: Material-material (M-M) boundary condition:

The interface between the two rods at the point of impact is one separating
two materials. When the two materials are in contact continuity dictates that the
material point velocities at the interface are equal, the total stresses are equal and the
temperatures are equal. Therefore:

uw=ul o =u, (39)
Gx+ = Gx_ = o-int (40)
T =T =T, (41)
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However, there are six dependent variables ( p,u,p,E,s (0,),€) in the governing

equations for the 1D system. The physically available boundary conditions and the
eos yield only four conditions on these variables. Therefore one needs to devise
numerical b.c.s for the remaining variables. Several alternative formulations of b.c.s
were tried. Some of these yielded unphysical solutions. The viable set of b.c.s
determined from numerical experiments are as follows:

P =E(p;) (42)
E* =E(E)) (43)
E*=E()) (44)
u* =1Iu;) (45)
p* =eos(p*,(pu’)*,E*) (46)
(s, +p) =1((s,+p))) 47

Here E is an appropriate extrapolation operator. The choice of the operator
determines the order of accuracy of the numerical b.c. at the interface. We perform
linear extrapolation of variables from the suitably chosen grid point values (e.g. j+1
and j+2 on the (+) and j-1 and j on the (-) side of the interface in Figure (6) to the
interface. Here I is an interpolation operator. Since the velocity is continuous across
the interface the value at the interface, according to Eq. (39) can be obtained by
interpolating from the grid points straddling the interface. Again the order of
interpolating operator determines the accuracy of the interface b.c. In our case I is a
distance-weighted linear interpolant.

Type 2: Material-void (M-V) boundary condition:

Before the rods impact there is a void separating them. Also, if the rods are finite the
material at the grid points to the right of the right rod and left of the left rod are void
regions. Therefore the ends of the rods are material-void interfaces. Again, the
physics dictates the following b.c.s on the material-void interface:

o, =0"=0"=0 (48)
along with the equation of state which applies in the material at the interface. This
again requires imposition of numerical boundary conditions at such interfaces for the
remaining variables. The appropriate numerical b.c.s were found to be:

p =E(p;) (49)
E =E(E) (50)
g =Z(E, (D)
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u =E(u;) (52)

p =eos(p”,(pu’) ,E) (53)
(s, +p) =0 (54)

Note that within the current Eulerian-Lagrangian framework, the boundary conditions
are applied and the discretization is performed in a one-sided manner, i.e., the
information for each material is drawn from within that material. Therefore, at the
material-material boundary the boundary conditions need to be determined on both
the (+) and (-) sides of the interface and stored. The discretization at point j in Figure
(6) therefore uses the values on the (-) side of the interface while that at point j+1 uses
the values on the (+) side of the interface. Finally, once the interface velocity is
obtained from the above boundary conditions, the interface position is updated
explicitly as:

(n+l) __ (n) (n)
X = Xing +6tuim (55)

int
9. 1D Results

The 1D system for which computations were performed is shown in Figure 1. Since
the results presented below are for the case of uniaxial strain, the two materials in
impact are termed plates. The plates were initially placed in contact at the midpoint of
the domain and given initial velocities which caused the impact and the interface
separating the two materials then traveled over the fixed grid. The position of both the
interface separating the two materials as well as the ends of the rods (in the case of
finite rods) were tracked over the grid. Thus the positions of the plate end points are
tracked explicitly.

Results of three cases are shown in the following for the 1D case. These involve the
traversal of plate end points of the material-material and material-void interfaces on
the fixed mesh. All computations are performed using the material properties for
Copper. The values used were a shear modulus of G=4.5x10"" Pa, density
p0=8.93x103 kg/m®, and an idealized stress-strain relationship giving the equivalent

stress:
’3 — ’—
o, = ESUSU=H(8)=H0+H8 (56)

where Ho=1.20x109 Pa and a constant H’= 0.12x10°Pa. Also in the Mie-Gruneisen
equation of state for copper, I'p=2, ¢o=3.94x10° m/s and s=1.49.

The mesh used in each case consists of 100 points in the domain. There are four
interfacial points tracked on the mesh corresponding to the ends of the two bars. The
computations are carried to significant times after impact so that the interfaces move
over several mesh cells.
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In Figure 8, we show the case of impact of two plates of semi-infinite extent. The
plates are initially positioned such that impact takes place at x = 0.6x107, the center
of the domain. The left plate has a velocity before impact of 500 m/s. The interface
points (plate end points) at the center in the domain are supplied with the material-
material boundary conditions on the (+) and (-) sides. At the left and right end of the
domain, zero-gradient conditions are applied for all quantities since the plate is
assumed to be semi-infinite. In each figure we show the profile along x of the flow
variables at equal intervals of time (At=2 microseconds) after impact. In figure 8(a)
the velocity profiles are shown. In Figure 8(c) we show the phases at each point in the
grid, again at equal time intervals of 2 microseconds. It can be seen that the interface
travels to the right due to the impact. In Figure 8(b) the profiles of the equivalent
stress show the large gradients developed at the interface following impact. The
resulting wave propagation phenomena lead to the propagation of stress waves and
corresponding strains through the plates. Symmetry about the point of impact is
maintained during the computation as it should be. At the material-material interface
point the material-material boundary conditions discussed above have been used.
Clearly, in the presence of the moving material-material boundary, the solution of the
governing equations leads to a stable physical solution.

In Figure 9 we show the solutions for the case where there are two finite plates in the
domain. The left plate initially has a velocity to the right of 500m/s. The right plate
is initially stationary. The finite plates initially occupy the regions

1x107° < x, <3x107 for the left plate and 3x10™ < x, < 5x10™ for the right plate.

We show the profiles for velocity (Figure 9(a)), equivalent stress (Figure 9(b)), and
phases (Figure 9(c)) in the domain at equal intervals -of time of At=2 microseconds.
In this case, while the waves propagate in the two plates, the plates are physically
moving and deforming over the mesh. The gradual equalization of the velocities of
the material points in the two plates is seen in Figure 9(a). As the computation
proceeds the maximum material point velocity oscillates between the two plates. As
can be seen in the profile 7 in Figure 9(a), the particle velocity in each plate is tending
to the mean value of 250m/s. Immediately after impact we see very large stresses
developing at the point of impact. As can be seen in Figure 9(c) the two plates are
moving to the right and the four interfaces, namely the material-material and
material-void interfaces are tracked through the mesh.
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Figure 8. 1D calculation of the impact of
two slender infinitely long plates on the
x-axis. Profiles of flow quantities at
equal intervals of time (2 microseconds)
are shown:

(a) velocity profiles (b) Stress (c) phase
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In Figure 10, we compute the case of two finite plates impacting with opposite
velocities. Initially the plates occupied the regions,1x10~ < x, <6x107°, and

6x107° < x, <1.1x107°. The left plate was given a velocity of 250m/s and the right

plate of —250 m/s. Note in this case the final velocities by symmetry should tend to
cancel, and both plates should be stationary on the x-axis, i.e. one expects that the
wave propagation and reflection from the material-void interfaces at the far ends of
the plate should take place symmetrically. Clearly, this symmetry is well maintained
by the computations. Initially, as seen in Figure 10(b) large gradients in stress are
initially developed in the region close to impact. The longitudinal oscillation of the
plates about the mean position can be seen from the profiles in Figure 10.
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10. Boundary and initial conditions in the 2D case

A schematic for the interface treatment in 2D computations is shown in Figure 11.
The impactor and target are initially placed some distance apart and impact is
initiated by giving a uniform velocity to the impactor while the target remains
stationary. Therefore, initially only particle velocities and other material properties
such as density have non-zero values, while stresses are set to zero. In the 2D case the
boundary conditions are based on the physically imposed ones and numerical b.c.s
obtained based on the experience gained from the 1D situation and tested by
numerical experiments. In contrast with the 1D case however, in 2D some regions of
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the interface can be in material-material contact and others can be exposed to a void.
This is illustrated in Figure 11. Here the region of contact between two curved
boundaries in collision is shown. The individual marker points which define the two
interfaces are also shown in the Figure 11. Interfacial boundary conditions are applied
at these marker locations on the interface. Therefore, as can be seen in the figure, an
interfacial marker in the material-material region can have an immediate neighbour in
the material-void region of the interface. Therefore, at each instant of the interface
deformation the interface markers have to be classified as material-material or
material-void markers and the appropriate b.c.s obtained. Thus two immediately
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Figure 11. Illustration of marker location and the type of boundary condition
aoplied at the different interface regions.

adjacent interfacial marker neighbours can have entirely different b.c.s imposed on
them.

Type 1: Material-material interface

Boundary conditions in the material-material case are developed based on the
physically required conditions of equal material point velocities at the interface for
the two materials, and the continuity of stress and temperature. These conditions can
be stated as:

u=u =u, (57)
V+ =y = Vint (58)
Gxx+ = xx_ = (O-x.r)im (59)
O-_\',\‘+ = yy— = (O-xy)im (60)
O-A')'+ = x)'_ = (O-x_\')int (61)
" =T =T, (62)

Along with the eos for the pressure these constitute 7 physically imposed conditions
at the interface for the nine independent variables (p,u,v, p,E,s,,,s,.s,,.€). This
necessitates numerical boundary conditions to be developed for the remaining

dependent variables. We obtain these based on extensions of the 1D boundary
conditions and verify that they provide numerically stable, convergent solutions

»?
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Figure 12. Illustration of marker and grid points involved in applying the material-
material boundary condition.

without unphysical behaviors such as overshoots or oscillations. The numerical
implementation of the boundary conditions can be explained with reference to
Figures (12) and (13).

For the material-material contact situation shown in Figure 12, the boundary
conditions are imposed on the interfacial markers shown on the interface by the filled
circles. The viable boundary conditions are determined to be:

Pt =E(p,,) (63)
E*=E(E,)) (64
E*=E( ) (65)
p* =eos(p*,(pu’)*,(pv*)*, EY) (66)
w'=1(u, ;) (67)
vi=1(,)) (68)
(s +p)Y =1((s,+ D), ;) (69)
(s, +p) =1((s,+p),,) (70)
(50" = 1((s);) (71)

In the above the operators = and I are the extrapolation and interpolation operators
respectively. The subscripts (i,j) indicate values on the grid while superscripts *
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Figure 13. Illustration of marker and grid points involved in applying the material-void
boundary condition.

indicate values on the (+) and (-) sides of the interface. In particular for the
interfacial marker indicated by the ellipse in Figure 12, a bilinear interpolation
operator is used to estimate the variables which are continuous across the interface.
The points 1,2,3 and 4 straddle the interface marker in question and bilinear
interpolation is performed based on the location of the interface marker and the
location of these grid points. Note that on a Cartesian mesh, having obtained the
information regarding the interface and its relation to the mesh as discussed in
Section 6, it is a simple matter to choose the points in the bilinear interpolant. The
extrapolation operator used for obtaining the values of variables not governed by
continuity conditions is somewhat less straightforward in 2D. For example, with
particular reference to the interfacial marker in focus in Figure 13 (in the ellipse),
extrapolation has to be performed from values at grid points within the interior of the
material. In order to do so, a normal is extended from the interfacial marker in
question into the material. The values at two nodes on the normal placed a distance h
(the grid spacing) apart are obtained by bilinear interpolation from grid points
straddling each normal node point. For normal node point 1 for example, the values
are interpolated from grid points connected by dashed lines. The value at the interface
is then obtained by extrapolating from the values at the two nodes along the extended
normal to the interface.

Type 2: Material-void interface

For a material-void interface, the physically imposed conditions on the interface are
that the traction be zero. In the present case we let the stresses vanish on the free
surface as:

28




6, =0 (72)
o, =0 (73)
6, =0 (74)

Along with the eos for pressure, which applies at the interface on the material side,
the imposed b.c.s account for only four of the nine independent variables. Therefore
numerical b.c.s are required at the interface and these are devised based on extensions
from the 1D case and by experimentation such that the b.c.s imposed do not lead to
development of unphysical features in the flowfield. The b.c.s imposed on the
material side of the interface are as follows:

p~=E(p,)) (75)
E =E(E)) (76)
g =E(,)) 7
u =E(@u ;) (78)
v =E(,) (79)
p~=eos(p™,(pu*) ", (pv*) . E7) (80)
(5, +p) =0 @)
(s, +p)" =0 82)
(5,)" =0 (83)

Note that no b.c.s are required on the void side of the interface.

11. Results of 2D computations

2D computations were performed in a square domain of size Im x 1m as illustrated
in Figure 2. As shown there the objects were placed some distance apart on the mesh
and impact was initiated by prescribing a velocity to one or both interfaces.
Initially there is a region of void between the two interfaces. When the interface
markers lie in a material-void region of the interface we apply the boundary
conditions of type 2 (M-V) on such markers. On markers in the material-material
regions of the interface, b.c.s of type 1 (M-M) are applied. Note that the
discretization procedure in 2D requires the value of g, at interface location not
coincident with the interfacial markers. To obtain the interfacial value of flow
quantities at such points, we interpolate along the interface using a linear function fit
between successive markers straddling the point as shown in Figure 4(c). Higher-
order interpolation along the interface is of course possible but was found to lead to
erroneous behaviour due to the large gradients along the interface at regions where
there is an abrupt switch from a M-M to M-V type boundary condition. This implies
that at points where the interfaces go from being in the material-material contact
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situation to material-void situation, such as point A in figure 11, we introduce a
lower-order interpolation practice to avoid overshoots.

We have tried several challenging cases for the evolution of the interfaces after
impact. In the first case, presented in Figure 14, we show the impact of a copper
cylinder with a copper planar surface. Both surfaces are copper and the material
properties in the model correspond to that metal. In the figure, we show on the left the
contours of particle velocity magnitude in the impactor and the target along with the
velocity vectors in the flow domain. On the right we show contours of equivalent
stress. Also shown in each of the figures is the shape of the boundaries of the two
materials. As can be seen in these figures there is an abrupt transition in the corners
from a mterial-material interface to a material-void interface for each material.
Appropriate boundary conditions as discussed in Section 10 are applied in these
regions. Zero-gradient conditions are applied at the sides of the domain assuming
that the target has infinite extent in all except the +y direction. Figures 14(a), (b) and
(c) correspond to time instants 2.5 us, 50us and 100 ps after impact respectively. The
progression of the elastic-plastic waves and the formation of large gradients in the
velocity as well stress fields is evident from the figure. At the rim of the impactor,
the interfaces are constantly in collision since the material-void interfaces are being
pushed against each other to form material-material interfaces. Thefore the rim of the
impact region registers large stress and correspondingly, strain values. Stress waves
are propagated into the materials from this point. In Figure 14(c) it can be seen that
the velocity field is such as to continuously push the impactor into the target leading
to the production of an upswell in the target material around the rim. This is also
indicated clearly by the velocity vectors shown. Regions of compression and tension
are seen from the contours of stress. The computational time for a 100x100 mesh
calculation to the stage shown in Figure 14(c) is about one hour on a DEC-Alpha
5000 computer. No attempt has been made to optimize the code and it should be
possible to decrease computational times significantly.

The next case corresponds to the impact of two cylindrical objects. Initially the lower
object is stationary and the upper object is placed some distance away. The upper
object then 1is projected with a velocity of -2000 m/s and impact with the lower
object results in the situation shown in the figure. Figures 15(a) ,(b),(c) and (d)
correspond to 2.5 ps, 50 ps, 100 pus and 150us after impact respectively. The lower
object acquires velocity after impact and is allowed to move freely downward
through the mesh as the velocity field develops. The velocity vectors show that the
impact causes a flattening of the interfaces and that the lower target deforms
symmetrically with respect to the impactor. Again the rim of the impact region
shows large stress concentrations due to the continuous compression of the interfaces
at that point by incorporation of the material-void interfaces.
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Figure 14. Impact of a cylinder with a planar surface. The cylinder impacts the target with a
velocity of 2000m/s directed downward. The figures on left show velocity contours and
vectors along with the interface shapes. The times after impact are indicated alongside the
figures. The figures on right show stress contours.
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(d) t=150 microseconds
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Figure 15 (continued). Impact of two cylinders in the plane. The upper cylinder impacts
the target with a velocity of 2000m/s directed downward. The figures on left show
velocity contours and vectors along with the interface shapes. The times after impact are
indicated alongside the figures. The figures on right show stress contours.

In Figure 16 we show the effect of grid refinement and time step refinement on the
computation of this problem. In that figure we have plotted the interfaces computed
at 50 ps, 75 ps, 100 pus and 150us respectively for the following:

1. 50x50 mesh, CFL =0.5

2. 100x100 mesh, CFL =0.5

3. 100x100 mesh , CFL =0.1
It can be seen from the figure that the solutions for these three cases are close
throughout the calculation. In fact cases 2 and 3 above are almost indistinuishable
due to the high-order time integration used ( 3™-order ). However, for t=100 us and
150 ps one sees differences in the solutions for the two grid resolutions. The solution
for the coarser grid lags that of the finer grid. Also the largest differences appear to
be at the rims of the impact area where the largest gradients are encountered due to
the singular behaviour there.

As a final demonstration we simulate the impact of a projectile-like slender body with
a planar target. The results are shown in Figure 17. The features of the impact
process in this case are very similar to those observed before. One again sees large
stress concentrations in the rim of the impact zone and the upwelling of material of
the target in the region around the impact zone. This is also seen from the velocity
vector plots. The direction of particle velocities reverse in the impacted material
away from the impacted region leading to the upwelling of material. This is despite
the specification of zero gradient conditions at all boundaries in the target which
were specified to approximate the infinite extent of the target. The presence of the
free surface (material-void interface) surrounding the impacted region allows for the
development of a velocity at the free surface which perits the pushing and lifting of
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interface shapes are superposed for the following cases: 50x50 mesh, CFL=0.5;
100x100 mesh, CFL=0.5; 100x100 mesh, CFL=0.1. Differences can only be
discerned between the 50x50 and 100x100 mesh solutions. Interfaces for the
two different time step sizes lie on each other.

material in that region. Note the shape of the crater formed due to the impact. Since
the target is unconfined the resulting crater appears to be assuming a nearly circular
shape.

11. Summary and future work

We have described the development of a numerical technique based on a fixed-grid
sharp interface tracking approach for the simulation of multi-material impact. The
physics of the problem is such that nonlinear elastic-plastic wave propagation
phenomena occur in the materials leading to the formation of shocks. We track
interfaces explicitly as points in 1D and curves in 2D. In its interaction with the
flowfield, although we are computing on a fixed mesh, the interface is treated sharply
and the discontinuities at the interface are not smeared. We have demonstrated that
the current method has the following capabilities:
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(d) t=150 microseconds
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Figure 17. (Continued) Impact of a slender elliptic cylinder with a planar surface. The
cylinder impacts the target with a velocity of 2000m/s directed downward. The figures on left
show velocity contours and vectors along with the interface shapes. The times after impact
are indicated alongside the figures. The figures on right show stress contours.

The interface can be tracked through large distortions.

Accurate shock-capturing schemes can be implemented for Cartesian grids

and extended in a straightforward manner to incorporate the presence of

the moving interfaces.

3. Boundary conditions are developed for the 1D uniaxial strain case and 2D
plane strain case and these are applied at the exact locations of the
boundaries.

4. Different regions of the boundaries can have different boundary
conditions, i.e. the material-material and material-void boundary
conditions. These are applied at the interface points identified to lie in
regions where the interfaces are in contact and where the interface is
exposed to a void, respectively. These boundary conditions are a
combination of physical and numerical boundary conditions. The
suitability of the set of b.c.s is determined based on numerical
experimentation. The singularity resulting from an abrupt transition from a
material-material to material-void b.c. at the interfaces is handled well.

5. Computations of the deformation process are carried to large distortions

while the interfaces travel through the mesh in a stable and robust manner.
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Future work will be directed toward establishing the validity of this method by
solving problems that can be benchmarked, such as the Taylor bar impact problem in
2D. We will also work on augmenting the current capabilities by introducing grid
refinement adaptively in the vicinity of interfaces and regions of large gradient. This
will alleviate computational times and also enhance accuracy in desired regions thus
enabling large-scale computations.
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